【天天時快訊】使用基于Raspberry Pi的DDS信號發生器實現精確RF測試
作者:Erbe D. Reyta,硬件應用工程師
Valentin Beleca,系統集成工程師
Mihai Bancisor,系統集成工程經理
ADI公司
摘要
在涉及射頻(RF)的硬件測試中,選擇可配置、已校準的可靠信號源是其中最重要的方面之一。本文提供了基于Raspberry Pi的高度集成解決方案,其可用于合成RF信號發生器,輸出DC至5.5 GHz的單一頻率信號,輸出功率范圍為0 dBm至-40 dBm。所提出的系統基于直接數字頻率合成(DDS)架構,并對其輸出功率與頻率特性進行了校準,可確保在整個工作頻率范圍中,輸出功率保持在所需功率水平的±0.5 dB以內。
(資料圖片)
簡介
RF信號發生器,尤其是微波頻率的RF信號發生器,以前通常是基于鎖相環(PLL)頻率合成器1來構建。PLL支持從低頻參考信號生成穩定的高頻信號。圖1顯示了一個基本PLL模型。該模型由反饋系統(其中包括一個包括一個電壓控制振蕩器(VCO)用于改變輸出頻率)、誤差檢測器(用于比較輸入參考頻率和輸出頻率)以及分頻器組成。當分頻器的輸出頻率和相位等于輸入參考的頻率和相位時,環路被認為處于鎖定狀態。2–5
image001.png
圖1.基本PLL模型
根據應用的不同,DDS架構作為頻率合成器可能比PLL提供了一種更好的替代方案。。圖2顯示了一個典型的基于DDS的信號發生器。調諧字應用于相位累加器,由后者確定輸出斜坡的斜率。累加器的高位經過幅度正弦轉換器,最終到達DAC。與PLL相比,DDS的架構具有明顯的優勢。例如,DDS數字相位累加器可實現比基于PLL的頻率合成器更精細的輸出頻率調諧分辨率。
image002.png
圖2.基于DDS的典型信號發生器
PLL切換時間是其反饋環路建立時間和VCO響應時間的函數,由于自身性質的限制,其速度較慢,而DDS僅受數字處理延遲的限制,因此具有更快的切換速度。在電路板尺寸方面,DDS的面積更小,便于系統設計,許多硬件RF設計難題也迎刃而解6。
下一部分將討論CN0511。一款基于DDS架構的完整DC至5.5 GHz正弦波信號發生器的總體系統設計。接下來將討論矢量信號發生器架構及其規格。而后將重點討論系統時鐘,包括時鐘參考要求以及時鐘管理單元和矢量信號發生器之間的電路連接。也會涉及電源架構和系統布局,并進一步說明整體系統如何實現高功率效率和合理的散熱性能。隨后的“軟件架構和校準”部分將圍繞系統軟件控制和校準展開討論。該部分將解釋軟件提供的靈活控制以及如何校準輸出功率。最后一部分將說明整體系統性能,包括系統相位噪聲、校準輸出功率和系統的熱性能。
系統級架構和設計考量
A:系統級設計
圖3所示系統是基于DDS架構的完整DC至5.5 GHz正弦波信號發生器。四開關DAC核心和集成輸出放大器在整個工作頻率范圍內提供極低的失真,并配有50Ω的輸出匹配終端。
板載時鐘解決方案包括參考振蕩器和PLL,因而無需外部時鐘源。所有電源均來自Raspberry Pi平臺板,其具有超高電源抑制比(PSRR)穩壓器和無源濾波功能,可使大幅減小電源轉換器對RF性能的影響。
image003.png
圖3.CN0511:基于RPI的頻率合成RF信號發生器
image004.png
圖4.所用矢量信號發生器(AD9166)的功能框圖
image005.png
圖5.ADF4372 RF8x輸出級
圖3所示架構可用于雷達、自動測試、任意波形發生器和單音信號發生器等各種應用。而本文中實現了單音信號發生器應用。以下小節將討論CN0511包含的主要集成器件。
B:矢量信號發生器
如圖4所示,所使用的DC至9 GHz矢量信號發生器包含一個6 GSPS(1倍不歸零模式)DAC、8通道、12.5 Gbps JESD204B數據接口以及一個具有多個數控振蕩器(NCO)的DDS。同時該器件是高度可配置的數字數據路徑,包括插值濾波器、反SINC補償和數字混頻器,支持靈活的頻譜規劃。
圖4所示系統利用DAC的48位可編程模數NCO以非常高的精度(43 μHz頻率分辨率)實現了信號的數字頻移。該DAC的NCO僅需要SPI寫入接口速度達到100 MHz即可快速更新頻率調諧字(FTW)。SPI還支持配置和監控該DAC中的各種功能模塊。本設計未使用JESD通道,器件僅在NCO模式下使用。
圖4中的矢量信號發生器集成了單端、50 Ω匹配的輸出RF放大器,因此無需采用復雜的RF輸出電路接口。表1顯示了AD9166的主要規格和在各種條件下的性能。
表1.AD9166主要規格















